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SEPARATION SCIENCE AND TECHNOLOGY, 22(5), pp. 1405-1423, 1987 

Aspects of One-Dimensional Filtration 

D. E. SMILES and J. M. KIRBY 
CSIRO DIVISION OF SOILS 
CANBERRA, AUSTRALIA 

Abstract 

In many circumstances, filtration of two-phase (solid-liquid) systems may be 
described by theory based on Darcy’s law and an appropriate continuity 
equation. In following this approach it is important to recognize that, since both 
phases are generally in motion relative to an observer, Darcy’s law describes the 
flow of the liquid relative to the solid particles in response to a space gradient of 
potential (head). It also emerges that analysis is often simplified by recasting the 
flow equations in a coordinate system based on the distribution of the solid 
component of the system. The theory requires that relations between the water 
content and (a) the water potential and (b) the permeability are well defined. 
Neither functional permits a priori prediction, although various formulas have 
been proposed in particular circumstances. This paper describes simply and 
directly the formulation of an appropriate material coordinate. It also provides 
experimental information relating to important aspects of filtration and the 
permeability of bentonite slurries subject to constant pressure filtration. It is 
shown that the one theory describes both filtration and expression, so the 
distinction between them is artificial. 

INTRODUCTION 

Theories of filtration and of consolidation have their origins in 
chemical engineering (Z-6), in civil engineering (7-ZZ), and in soil 
science (12-1 7). There are, however, difficulties which restrict application 
of theory in each discipline. 

The first is the problem of semantics, and the use of different 
functional variables in the different disciplines. An example is provided 
by the use of water potential in soil physics to describe what in chemical 
engineering is the negative of the solid compressive pressure, or in civil 
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1408 SMILES AND KIRBY 

engineering the negative of the effective stress. Another problem arises 
when empirical relations are used prematurely in the derivation of the 
flow equations appropriate to the processes under consideration. For 
example, the use of the Kozeny-Carman relation to relate the perme- 
ability (or hydraulic conductivity) to the void ratio (or volume fraction of 
water) of the system early in the derivation of a flow equation often 
greatly complicates the form of the equation and tends to obscure the 
principles on which it is based. 

This paper addresses two issues: 

(1) It derives the filtrationlconsolidation equation, taking as bases the 
continuity equations of the liquid and the solid, and Darcy’s law. In 
the process the physical rationale for material coordinates which 
much simplify the solution of flow problems is set out, together 
with the reason for using volume fraction in physical space and 
void ratio in material space (8). 

(2) It provides comment on recent developments in filtration (and 
consolidation) theory and, in particular, on implications in the 
literature (3, 4 )  that the early (filtration) and later stages (expres- 
sion) of constant pressure dewatering are somehow different. 

Reference is made to a series of experiments in which volumes of 
bentonite slurry are filtered by the imposition of constant pressure in a 
filter cell at the base of which is a membrane that permits escape of liquid 
but not solid. 

The theory is developed here quite specifically for flow in a two-phase 
system for which 

where 0, and 0, are volume fractions of solid and water, respectively. 

THEORY 

In a two-phase system during one-dimensional nonsteady flow, 
equations of continuity may be written for the water (Eq. 2) and for the 
solid (Eq. 3), viz., 
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ASPECTS OF ONE-DIMENSIONAL FILTRATION 1407 

In these equations F, and F, are the volume fluxes of water and solid, 
respectively, relative to an external observer, and z and t are distance and 
time, respectively. 

During flow involving water content change, both the water and the 
solid are in motion, so the flux of water relative to an observer has a 
component, u, relative to the solid particles, and a “convective” com- 
ponent associated with the moving particles. Thus, F, may be written 

F ,  = u + O,Fs/O,y = u + 8 F s  (4) 

In Eq. (4), F,& is the average velocity of the solid and 0,/0,, = 9 is the 
moisture ratio (volume of water per unit volume of solid). In a saturated 
system, 8 is identical to the void ratio, e: the distinction is maintained to 
anticipate situations where air may enter the system and 9 < e (23). 

If we now substitute for F, from Eq. (4) in Eq. (2), and also substitute 
9Q,v for 0,, we obtain 

Differentiation by parts followed by the elimination of two terms using 
Eq. (3), and division by 0, then yield 

Equation (6) provides a basis for an Eulerian analysis of unsteady flow 
problems expressed in terms of the space coordinate z. Such an approach 
was developed by Philip (22) and more recently by Wakeman (28). 
Alternatively, a Lagrangian analysis may be used if we recognize that the 
left-hand side of Eq. (6), together with the second term on the right, 
represent the differential of 9 following the motion of the solid (e.g., Refs. 
13, 24), that is, 

with rn(z,t) a material coordinate defined by the equations 
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(8)  

so that 

Note that Eq. (8) and Eq. (9) satisfy the continuity Eq. (3) for the 

Substitution of Eq. (7) in Eq. (6) and the use of Eq. (8) yields the 
solid. 

continuity equation for the water in material space, viz., 

Further development of the theory concentrates on Eq. (1 1)  and in 
particular on the laws of flow necessary to define u. 

Darcy’s Law for Colloidal Systems 

In the system we describe, Darcy’s law describes the volume flux of the 
water relative to thepaflicles in response to a space gradient of piezometric 
head (29). Here we use the total potential, Q,, of the water rather than the 
piezometric head, although the two are simply related (as we shall show). 
Darcy’s law then becomes 

In Eq. (12), u has units (m/s), v is the kinematic viscosity of water (m2/s), 
and k(9) is the water content dependent permeability. If Q, is expressed as 
energy per unit mass of water, with SI units J/kg, then the permeability 
takes units of m2. The form of k(9)  in systems that change their volume 
with 8 is well known (9, ZO), and Carman (2O), in particular, explored 
methods for its prediction. The development of this theory assumes that 
k(8) is well defined. 
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ASPECTS OF ONE-DIMENSIONAL FILTRATION 1409 

Total Potential of Water 

In a two-phase swelling material, the total potential of the water is 
given by 

Q, = Y(9) + a + g z  (13) 

In Eq. (1 3), g is the acceleration due to gravity so gz is the gravitational 
potential of water at z relative to a convenient datum, a is the overburden 
potential, and Y(8) is the water content dependent potential that arises as 
a result of interaction of the water with the solid surfaces and their 
geometry. “(8) is readily measured (21). 

The overburden potential (22, 2.3) is defined by 

where yw is the wet specific gravity of the system, z = z I  is its upper 
surface, and P is any normal surface load. 

Combination of Eq. (13) and Eq. (14) yields 

@ = Y(8)  + g I” ywdz + P + gz 
z 

= P w @ )  + gz  (15) 

In Eq. (15), pw(z) is the water pressure measured with a manometer 
fitted with a membrane that permits passage of water but not solid. 
According to Eq. (15), Y(8) is the negative of the “effective stress’’ of civil 
engineering theory (24) or the interparticle or solid compressive pressure 
of filtration theory (25). 

Substitution of Eq. (13) in Eq. (12) and the inclusion of Eq. (14) then 
yields Darcy’s law in the form 

u = - k ( 8 ) V - f x  ay + g(l  - YJ) 

= -  

In Eq. (16), y is the specific gravity of the solid component of the 
system, and we have used Eq. (8), noting that 0, = (1 + 8)-’, to derive the 
second equality. The group k(a)v-’(l + 8)-’(s) plays the same role in 
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1410 SMILES AND KIRBY 

material space as the hydraulic conductivity k(6)v-’(s) plays in physical 
space. 

Equation of Unsteady Vertical Flow in a Two-Component System 

A general equation of flow now follows if we substitute for u from Eq. 
(16) in Eq. (11): 

which may be written as the nonlinear Fokker-Planck equation (26, 27) 

in which the moisture diffusivity D is  given by 

k ( 8 )  dY 
v(l + 6 )  dB D =  

and the coefficient E given by 

The moisture diffusivity D (m2/s) will be recognized as a coefficient of 
consolidation in civil engineering terms (7-10) and as an expression 
coefficient in filtration theory (1, 3, 6). 

The coefficient E (m/s), which embodies the effects of gravity both 
directly and through the overburden component of potential, does not 
generally appear in filtration theory. 

The fact that both D and E vary with 6 complicates the solution of Eq. 
(20). There is, nevertheless, a substantial literature, in particular in soil 
physics and hydrology, devoted to analytical, quasi-analytical, and 
numerical methods of solving this equation subject to relevant conditions 
(e.g., Refs. 28-31). 

In practice, however, this full solution may be unnecessary for many 
materials and flow conditions for a material with, for example, y = 2.6 
and 6 = 25, the “effect of gravity” is, as we show later, substantially 
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ASPECTS OF ONE-DIMENSIONAL FILTRATION 1411 

reduced. The flow process, in consequence, approximates more closely 
that of a “gravity-free’’ system for which Eq. (18) becomes the nonlinear 
diffusion equation 

The importance of gravity also diminishes as the imposed pressure Pi is 
increased (cf. Eq. 15), and the major features of constant pressure 
filtration, which we use below, are well predicted by solutions to Eq. 
(21). 

Experimental 

The experiments illustrate basic principles of the approach and also 
permit comment on the relationship between the “early” and ‘‘later’’ 
stages of dewatering. Data also permit test of the Kozeny-Carman model 
for calculating the k(8) relation of a slurry of Wyoming bentonite. 

The experiments were performed in cylindrical pressure cells of cross- 
section A = 11.34 cm2 at the base of which a 0.45-pm filter membrane 
permitted escape of water, but not clay, to atmospheric pressure. The 
escaping water was collected on a top-weighing balance, so the outflow 
rate could be measured. 

The clay had an initial water content, 9, of 37.5 and a particle specific 
gravity of 2.6. 

Material Coordinate 

The rn-coordinate is determined by integrating Eq. (lo), taking 
advantage of the fact that at the filter membrane (z = 0) the flux of solid, 
F,, is zero. Thus 

= 1 (1 + (23) 

and m is therefore the cumulative volume of the solid, per unit area of 
cross section, measured away from the membrane. 

In the experiments described here, a known volume, V, of wet clay is 
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1412 SMILES AND KIRBY 

added to the filtration cell. Thus, the material length of the system is a 
constant M given by 

M = V/A(l + 8,) (24) 

in which 8, (= 37.5) is the initial uniform liquid content of the clay. 

Initial and Boundary Conditions 

In material space the initial condition is 

The boundary conditions, following the imposition of a constant 
pressure at t = 0, are (15) 

and 

d8/dm = 0, m = M ,  t > 0 (27) 

with 8, the water content in equilibrium with the imposed pressure for 
pw = 0 (cf. Eq. 15). 

Two sets of experiments were performed. In the first, 10 ml samples of 
clay were subjected to various constant pressures equivalent to values of 
Y/(J/kg) in the range -1 > Y/(J/kg) > -10’. During these experiments, 
the outflow was measured, and when equilibrium was judged to exist, the 
equilibrium water content was determined by oven drying (at 105°C) the 
clay remaining in the pressure cell. 

Figure 1 shows equilibrium Y(8) data from these experiments. 
In addition, a subset was performed at a particular pressure (equivalent 

to Y = -64 J/kg). In this group, different initial volumes of the clay slurry 
were used. For each experiment the (constant) material length, M, was 
calculated using Eq. (24). 

Figure 2 shows cumulative outflow, i, graphed as a function oft*” for 
these experiments. The data are in the reduced forms (i/M) and (t”2/M) to 
eliminate the effect of V. 

In the second series of experiments, longer columns of clay were used, 
and this series was terminated while the water content at the distal end 
remained unchanged at 9 = 37.5. The spatial distributions of water and 
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ASPECTS OF ONE-DIMENSIONAL FILTRATION 1413 

301------ 

I 

I00 101 102 
0' 

-v  /(Jkfl) 

FIG. 1. The characteristic equilibrium relation between water content, 8, and water potential, 
Y, for the clay used in the experiments described herein. 

clay were determined by destructive sectioning and oven drying. All 
experiments in this series were submitted to a pressure equivalent to Yl(Jl 
kg) = -64 but were terminated at different times t .  

For this set of experiments the Boltzmann variable, h = mf'", then 
may be used to eliminate m and t from both the flow Eq. (21) and the 
conditions for its solution (Eqs. 25, 26) and, by implication, 9(h) is the 
unique solution of this set of equations. So, if Eq. (21) is valid and Eqs. 
(25) and (26) are realized experimentally, then the data from this second 
series of experiments must be unique if graphed as 9 vs A. 

Figure 3 shows that these data so plotted are indeed effectively 
unique. 

DISCUSSION 

In what follows, we need details of the solution of Eq. (21) subject to 
Eqs. (25) and (26). Full theory is set out elsewhere (28) but, briefly, the 
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1414 SMILES AND KIRBY 

30 

20 
i /M 

(m2s-') 

10 

/ 4 O  
/ A o  

5ml sample 8'. pc o lOml sample 

A 25ml sample 

s = 4.44 16' ms'+ 

0 0 
A A A A  

* *  

0 

t d ' m ~  (s'%m-i) 
FIG. 2. Cumulative outflow, i ,  graphed as a function of +I2 for columns of clay of initial 
water content 8 = 37.5 and material length M = 1.15 X m (0), and 
5.73 X m (A). Each column was subject to a constant pressure of 64 k,Nlm2. The effect 

m (O), 2.3 X 

of M is eliminated by use of the variables ilM and t'I2/M. 

introduction of h in the equations followed by integration of the 
transformed Eq. (21) using Eq. (25) yields 

d9 D(i3)- = -I -d9  
d h  8, 2 

and then using Eq. (26) 

Equation (28) provides the basis for calculating 6(h) if o(8) is known 

Figure 4 shows D(8) so calculated for the data of Fig. 3. 
(28-3Z), or a method (28) for calculating o(8) from a@). 
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ASPECTS OF ONE-DIMENSIONAL FILTRATION 1415 

FIG. 3.  Profiles, observed during filtration, of water content, 9, graphed as a function of 
material distance, rn, divided by t”*, for clay with initial water content 9 = 37.5, and subject 
to pressure of 64 kNlm2. Also shown is the error function solution of Eq. (21) subject 

to relevant conditions and which yields,comect integral behavior for the system. 

Equation (29), differentiated with respect to x and integrated with 
respect to t ,  yields 

-i = [u,,,=,,ddt = S(a,,O,,)t’/2 (30) 

This equation follows if we recognize that within the gravity-free analysis 
(for which Eq. 21 is appropriate), combination of Eq. (12) and Eq. (19) 
yields 

d 9  u = -D(S )  - 
d X  

Within this framework, we make the following comments: 
(1) The hydraulic properties of this material are fully defined by the 

data of Figs. 1 and 4. Neither relation is predictable, but both are 
macroscopic and readily measurable. They do not depend on any 
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1416 SMILES AND KIRBY 

FIG. 4. DiffusivityD(8) derived from the data of Fig. 3 using Eq. (28). The dashed line is the 
constant value of D which yields correct integral behavior for the system filtering under a 

pressure of 64 kN/m2. The continuous line is the mean. 

abstractions relating to particle shape, arrangement, or interaction. They 
do, of course, represent the appropriate test of models so based. 

(2) Figure 2 reveals cumulative outflow linear with regard to t1I2 for the 
“early stages” of the filtration process, as Eq. (30) requires. Furthermore, 
the slope of the curve equals the integral in Eq. (29) evaluated with the 
data of Fig. 3, as it must. On closer comparison, it emerges that the 
reduced time t’”/M, for which Fig. 2 data are linear, exceeds by a factor of - 1.66 the value of l/h in Fig. 3 where 9-9,. Thus, t’” behavior continued 
-2.75 times longer than the time when the water content at the distal end 
commenced to decrease. “Square-root-of-time’’ behavior therefore reveals 
no indication of a time when the process of “filtration” becomes one of 
“expression” or “consolidation.” 

Physically, this somewhat surprising behavior arises because of the 
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ASPECTS OF ONE-DIMENSIONAL FILTRATION 1417 

“shape” of the D(8) relation in Fig. 4 and the fact that flow is related to the 
integral of D(8) but weighted toward the outflow surface where 8 = 8, and 
D(8) is relatively great (32). 

Specifically, for the semi-infinite case, it can be shown (30) that 

Thus the appropriate mean value of D(8) is given by 

In these equations, F is the flux-concentration relation (29), i.e., the 
characteristic ratio of flux at 8 = 8, to that at 8 = 8,; and &8,,,8J is the 
appropriate mean value of D(8). The second equality in Eq. (32) is the 
exact solution of the linear form of Eq. (21) subject to Eqs. (25) and (26) 
(33). 

If now we assume (reasonably) (32) that for filtration 

where 

it follows that 

where the “shape” of D(8) and the effect of 0 in the right-hand integral 
conspire to weight b toward a value close to that at a0. By implication 
then, flow is relatively insensitive to what is happening at the distal end of 
the column. 

(3) The solution of the linear form of Eq. (21). For the data of these 
experiments, b= 2.12 X lo-’’ m2/s yields integral behavior which corre- 
sponds with observation shown in Fig. 2. In this sense, then, the solution 
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1418 SMILES AND KIRBY 

of the linear form of Eq. (21) subject to Eqs. (25) and (26) is exact. The 
penalty for linearization, however, is shown in Fig. 3, where the linear 
solution (33) is shown as the smooth (error function) curve. Clearly, this 
solution gives an incorrect prediction of the spatial distribution of the 
solid and the water, although its “integral” behavior corresponds to 
reality. 
(4) The relationship of D(9) defined for material space with the 

corresponding coefficient in “x-space.” Equation (5) was developed (12, 
14) to yield an equation corresponding to Eq. (21) in x-space. In that 
space the coefficient corresponding to D(9) is D(0). The two are related 
according to 

For the material we deal with, the variation in D(0) is about the same as 
that of D(9) in the corresponding moisture content ranges, so it might 
appear to be sensible to work in real space. In fact, however, the 
arithmetic is more complicated (12), and methods for solving Eq. (21) (or 
Eq. 18) are so well-developed that the material approach is preferable (cf. 
Refs. 12 and 14). 

( 5 )  Equation (19), together with the data of Figs. 1 and 4, permits us to 
calculate the k(9) relation for this clay. The result of this calculation is 
shown as Fig. 5. These data may then be compared with the correspond- 
ing functional calculated using the approach of Kozeny-Carman in 
which k is taken to be proportional to the cross-sectional area available 
for flow, Ow, and to the square of the characteristic length of colloid 
particle separation, (eje,)*, i.e., 

From Fig. 5 it is evident that the Kozeny-Carman approximation does 
not provide a good basis for prediction of k(9) for this clay. 

(6) The importance of gravity. Formally, the “early stages” of filtration 
in a vertical cell require, for their description, the solution of Eq. (18). The 
data presented here justify the use of the simpler Eq. (21), but it is still 
useful to define conditions under which the full solution is required; 
particularly since the problem is raised in a formal sense by, €OT example, 
Gibson et al. (8). A useful, order-of-magnitude estimate of the time for 
which a gravity-free analysis is appropriate is provided by Philip (28) and 
used by Smiles (34). 

Briefly, the solution of Eq. (18) subject to Eqs. (24) and (25) can be 
written as the series 
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lo-" 

k 
( m2) 

lo-' 

10-1' 
I I I I I I I I 
10 12 14 16 I8 20 22 24 

29. 
FIG. 5. Graphs showing k as a function of 8 determined (a) using Fig. 1 and Fig. 4 and Eq. 
(19); and (b) the approach of Kozeny-Cannan matched to (a) at 8 = 19. Evidently the 

Kozeny-Cannan approach is unreliable for this material. 

-i(t) = + at + p P 2  + . a (39) 

in which S is the solution to the gravity-free Eq. (21) and the subsequent 
terms represent the effect of gravity. A comparison of the first and second 
terms of the series yields the required estimate. Thus, if t, is the time for 
which St"2 2 looat and we set a = vZ(g(y - l)k(D,)/v(l + 9,)) (33), then for 
the material described here, 

t ,  = 10-4(s/a)2 

= 2.239 X lo7 s 
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1420 SMILES AND KIRBY 

which would correspond to a column of initial material length 1.9 X lo-’ 
m, or actual length 0.64 m. 

It should be emphasized here that it is not generally true that gravity 
effects can be neglected, and certainly data for “red mud” suggest that 
filtration (or sedimentation) in that material requires solution for 
appropriate conditions of the full Eq. (18) (35, 36). Filtration for longer 
periods of time require formal solution of Eq. (18). Solutions of this 
equation subject to conditions (24) and (25) are available (30,37,38), and 
immediate recourse to linearization (e.g., Ref. 8)  is unnecessary and often 
misleading since linearization, as we show above, produces correct 
integral behavior but cames the penalty that the profile shapes can be 
substantially in error. 

(7) The requirement that the water content remains unchanged at the 
distal end of the column. It must be admitted that the analytical and 
quasi-analytical solutions alluded to here do not apply to columns once 
9(M) < 9,, and the approach to equilibrium must then be handled 
numerically. This problem is not of great moment, however, and 
matching of the quasi-analytical approach for early stages of outflow 
(where the numerical procedures are relatively inefficient), with the 
efficient numerical calculation of the final stages (of expression), appears 
to provide a rational comprdmise. This procedure will be described 
elsewhere. 

(8) Conversion of data from material to “real” space. Various important 
aspects of filtration can be derived by integration or differentiation of 
8(h) and manipulation of Eq. (4). Here it suffices to demonstrate the 
conversion from m-space to z-space for the data of Fig. 3. For this data set 
it follows from Eq. (10) that the variables h (= mt-’”) and x (= zt-’”) are 
related according to x = fi (1 + Q)dh. 

Figure 6 shows A&) calculated using the data of Fig. 3. It will be noted 
that since A, in a reduced sense, is the cumulative volume of solid 
measured away from z = 0, Fig. 6 shows the spatial distribution of solid 
volume in the filter cake and its evolution in time. The dashed curve in 
Fig. 6 shows the error incurred if the problem is linearized, and the error 
function “solution” of the problem is used as a basis for calculation with 
this set of data. 

(9) Other features of filtration. It was not the purpose of this paper to set 
out in full the details that emerge from this approach to filtration. It is 
important to note, ‘however, that other aspects of the process are readily 
derived from &A). For example, the distribution of water potential is 
readily determined from Figs. 3 and 1, while the water pressure p w  may 
then be calculated using Eq. (15). 

In addition, F, and Fw can be determined by noting, from Eq. (30) and 
the continuity requirement, that 
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FIG. 6. Graph relating the material coordinate m (in reduced form A = rnt-’I2) to “real” 
space a (in the form x = zt-liZ). This graph also reveals the cumulative distribution of solid 

in real space because of the definition of m (Eq. 23). 

F,  + F, =-i = St‘ /2  

whence, from Eq. (4), 

Fs = (St”’ - u)/(l  + 8)  

and 

F ,  = (8St”2 + u)/( l  + 8) 

in which the Darcy flux u is given by 
8 

u = -Pl,  (h/2)d8 

which is derived from Eqs. (28) and (31). 
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CONCLUDING REMARKS 

SMILES AND KIRBY 

We have described simply and directly the formulation of an equation 
describing one-dimensional filtration of a dispersion of solid particles in 
liquid, using a membrane impermeable to the solid. 

The approach, which is based on Darcy's law and continuity equations 
for the liquid and the solid, depends on the existence of functionals 
relating the permeability and the liquid potential to the liquid content of 
the suspension. Although neither relation permits precise prediction, 
both are readily measured. 

If the problem is cast in material coordinates (which satisfy the 
continuity equation for the solid component), the flow equation takes the 
form of a nonlinear Fokker-Planck equation which reduces to a 
nonlinear diffusion equation in circumstances where gravity effects may 
be neglected. 

Methods of solution of these equations, without recourse to lineariza- 
tion, are well known. 

Data are presented which yield no evidence to justify treating 
consolidation or filtration as physically different processes. 
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