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Aspects of One-Dimensional Filtration

D. E. SMILES and J. M. KIRBY

CSIRO DIVISION OF SOILS
CANBERRA, AUSTRALIA

Abstract

In many circumstances, filtration of two-phase (solid-liquid) systems may be
described by theory based on Darcy’s law and an appropriate continuity
equation. In following this approach it is important to recognize that, since both
phases are generally in motion relative to an observer, Darcy’s law describes the
flow of the liquid relative to the solid particles in response to a space gradient of
potential (head). It also emerges that analysis is often simplified by recasting the
flow equations in a coordinate system based on the distribution of the solid
component of the system. The theory requires that relations between the water
content and (a) the water potential and (b) the permeability are well defined.
Neither functional permits a priori prediction, although various formulas have
been proposed in particular circumstances. This paper describes simply and
directly the formulation of an appropriate material coordinate. It also provides
experimental information relating to important aspects of filtration and the
permeability of bentonite slurries subject to constant pressure filtration. It is
shown that the one theory describes both filtration and expression, so the
distinction between them is artificial.

INTRODUCTION

Theories of filtration and of consolidation have their origins in
chemical engineering (/-6), in civil engineering (7-17), and in soil
science (I12-17). There are, however, difficulties which restrict application
of theory in each discipline.

The first is the problem of semantics, and the use of different
functional variables in the different disciplines. An example is provided
by the use of water potential in soil physics to describe what in chemical
engineering is the negative of the solid compressive pressure, or in civil
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engineering the negative of the effective stress. Another problem arises
when empirical relations are used prematurely in the derivation of the
flow equations appropriate to the processes under consideration. For
example, the use of the Kozeny-Carman relation to relate the perme-
ability (or hydraulic conductivity) to the void ratio (or volume fraction of
water) of the system early in the derivation of a flow equation often
greatly complicates the form of the equation and tends to obscure the
principles on which it is based.
This paper addresses two issues:

(1) It derives the filtration/consolidation equation, taking as bases the
continuity equations of the liquid and the solid, and Darcy’s law. In
the process the physical rationale for material coordinates which
much simplify the solution of flow problems is set out, together
with the reason for using volume fraction in physical space and
void ratio in material space (8).

(2) Tt provides comment on recent developments in filtration (and
consolidation) theory and, in particular, on implications in the
literature (3, 4) that the early (filtration) and later stages (expres-
sion) of constant pressure dewatering are somehow different.

Reference is made to a series of experiments in which volumes of
bentonite slurry are filtered by the imposition of constant pressure in a
filter cell at the base of which is a membrane that permits escape of liquid
but not solid.

The theory is developed here quite specifically for flow in a two-phase
system for which

6,+606,=1 m

where 0, and 0, are volume fractions of solid and water, respectively.

THEORY

In a two-phase system during one-dimensional nonsteady flow,
equations of continuity may be written for the water (Eq. 2) and for the

solid (Eq. 3), viz.,
08,\ _ _(0F,
(at )z_ (62)} 2)
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()-8
or /, dz /,

In these equations F, and F, are the volume fluxes of water and solid,
respectively, relative to an external observer, and z and ¢ are distance and
time, respectively.

During flow involving water content change, both the water and the
solid are in motion, so the flux of water relative to an observer has a

component, u, relative to the solid particles, and a “convective” com-
ponent associated with the moving particles. Thus, F,, may be written

F,=u+0,F/8, =u+938F, “4)

In Eq. (4), F,/9, is the average velocity of the solid and 0,/6, = 8§ is the
moisture ratio (volume of water per unit volume of solid). In a saturated
system, J is identical to the void ratio, e: the distinction is maintained to
anticipate situations where air may enter the system and 8§ < e (I3).

If we now substitute for F,, from Eq. (4) in Eq. (2), and also substitute
99, for 0,, we obtain

()02 o

Differentiation by parts followed by the elimination of two terms using
Eq. (3), and division by 6, then yield

R R N

Equation (6) provides a basis for an Eulerian analysis of unsteady flow
problems expressed in terms of the space coordinate z. Such an approach
was developed by Philip (/2) and more recently by Wakeman (I8).
Alternatively, a Lagrangian analysis may be used if we recognize that the
left-hand side of Eq. (6), together with the second term on the right,
represent the differential of § following the motion of the solid (e.g., Refs.

13, 14), that is,
B 4 (B)(2) - ()
(6t ),+(05)<6z . ot /, @)

with m(z,t) a material coordinate defined by the equations
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om/oz = 9, (®)
and
om/ot = —F, C))
so that
dm = 8dz ~ Fd: (10)

Note that Eq. (8) and Eq. (9) satisfy the continuity Eq. (3) for the
solid.

Substitution of Eq. (7) in Eq. (6) and the use of Eq. (8) yields the
continuity equation for the water in material space, viz.,

(%))

Further development of the theory concentrates on Eq. (11) and in
particular on the laws of flow necessary to define u.

Darcy’s Law for Colloidal Systems

In the system we describe, Darcy’s law describes the volume flux of the
water relative to the particles in response to a space gradient of piezometric
head (19). Here we use the total potential, ®, of the water rather than the
piezometric head, although the two are simply related (as we shall show).
Darcy’s law then becomes

u=—k(§)v(dd/dz) (12)

In Eq. (12), u has units (m/s), v is the kinematic viscosity of water (m%/s),
and k(®) is the water content dependent permeability. If @ is expressed as
energy per unit mass of water, with SI units J/kg, then the permeability
takes units of m? The form of k(®) in systems that change their volume
with 9§ is well known (9, 10), and Carman (20), in particular, explored
methods for its prediction. The development of this theory assumes that
k(®) is well defined.
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Total Potential of Water

In a two-phase swelling material, the total potential of the water is
given by

O=YH+Q+gz 13)

In Eq. (13), g is the acceleration due to gravity so gz is the gravitational
potential of water at z relative to a convenient datum,  is the overburden
potential, and ¥(D) is the water content dependent potential that arises as
a result of interaction of the water with the solid surfaces and their
geometry. ¥(§) is readily measured (21).

The overburden potential (22, 23) is defined by

n=gf'ywdz+1) (14)

where v, is the wet specific gravity of the system, z = z, is its upper
surface, and P is any normal surface load.
Combination of Eq. (13) and Eq. (14) yields

¢=W(8)+gj‘ywdz+P+gz

=pu2) + g2 (15)

In Eq. (15), p{z) is the water pressure measured with a manometer
fitted with a membrane that permits passage of water but not solid.
According to Eq. (15), ¥(3) is the negative of the “effective stress” of civil
engineering theory (24) or the interparticle or solid compressive pressure
of filtration theory (25).

Substitution of Eq. (13) in Eq. (12) and the inclusion of Eq. (14) then
yields Darcy’s law in the form

k@ (ZE + 50~ 1))

=
I

__k® (oY _
v+ 9) (6m +2( ”) (16)

In Eq. (16), vy is the specific gravity of the solid component of the
system, and we have used Eq. (8), noting that 6, = (1 + §)7', to derive the
second equality. The group k@)v (1 + $)7!(s) plays the same role in



13:12 25 January 2011

Downl oaded At:

1410 SMILES AND KIRBY
material space as the hydraulic conductivity k(3)v~'(s) plays in physical
space.

Equation of Unsteady Vertical Flow in a Two-Component System

A general equation of flow now follows if we substitute for u from Eq.
(16) in Eq. (11):

3 _ 0 (_k®) ¥\ _ . 0 ( k@®
or  m (v(l +9) am) gy =1 om (v(l +8)) 17

which may be written as the nonlinear Fokker-Planck equation (26, 27)

3 _ 2 (pe 28 _ oy 0
9t om (D(a) 6m> EO) 5m (18)
in which the moisture diffusivity D is given by

k(¥ av

T v(1+9) dd (19
and the coefficient E given by
= oy — 12 _kQ)__)
E=gly l)df)(v(l +9) (20)

The moisture diffusivity D (m?%s) will be recognized as a coefficient of
consolidation in civil engineering terms (7-/0) and as an expression
coefficient in filtration theory (I, 3, 6).

The coefficient E (m/s), which embodies the effects of gravity both
directly and through the overburden component of potential, does not
generally appear in filtration theory.

The fact that both D and E vary with & complicates the solution of Eq.
(20). There is, nevertheless, a substantial literature, in particular in soil
physics and hydrology, devoted to analytical, quasi-analytical, and
numerical methods of solving this equation subject to relevant conditions
(e.g., Refs. 28-31).

In practice, however, this full solution may be unnecessary for many
materials and flow conditions for a material with, for example, y = 2.6
and & = 25, the “effect of gravity” is, as we show later, substantially
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reduced. The flow process, in consequence, approximates more closely
that of a “gravity-free” system for which Eq. (18) becomes the nonlinear
diffusion equation

0y _ @ N
" am (D“’) 5;;) b

The importance of gravity also diminishes as the imposed pressure P, is
increased (cf. Eq. 15), and the major features of constant pressure
filtration, which we use below, are well predicted by solutions to Eq.
2.

Experimental

The experiments illustrate basic principles of the approach and also
permit comment on the relationship between the “early” and “later”
stages of dewatering. Data also permit test of the Kozeny-Carman model
for calculating the k(8) relation of a slurry of Wyoming bentonite.

The experiments were performed in cylindrical pressure cells of cross-
section 4 = 11.34 cm’ at the base of which a 0.45-um filter membrane
permitted escape of water, but not clay, to atmospheric pressure. The
escaping water was collected on a top-weighing balance, so the outflow
rate could be measured.

The clay had an initial water content, 8, of 37.5 and a particle specific
gravity of 2.6.

Material Coordinate
The m-coordinate is determined by integrating Eq. (10), taking

advantage of the fact that at the filter membrane (z = 0) the flux of solid,
F, is zero. Thus

m(z.1) = fo “02.0)dz - jo CF(0,)dF 22)

= J:(l +8)'dz (23)

and m is therefore the cumulative volume of the solid, per unit area of
cross section, measured away from the membrane.
In the experiments described here, a known volume, V, of wet clay is
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added to the filtration cell. Thus, the material length of the system is a
constant M given by

M=V/A(1 +9),) (24)

in which 8, (= 37.5) is the initial uniform liquid content of the clay.

Initial and Boundary Conditions
In material space the initial condition is
9 =9, (= 37.5), 0<m<M, t=20 (25)

The boundary conditions, following the imposition of a constant
pressure at ¢ = 0, are (I5)

9 =23, m=0, t>0 (26)
and
d9/0m = 0, m=M, t>0 (27)

with 8, the water content in equilibrium with the imposed pressure for
Pw = 0 (cf. Eq. 15).

Two sets of experiments were performed. In the first, 10 ml samples of
clay were subjected to various constant pressures equivalent to values of
¥/(J/kg) in the range —1 > ¥/(J/kg) > —10% During these experiments,
the outflow was measured, and when equilibrium was judged to exist, the
equilibrium water content was determined by oven drying (at 105°C) the
clay remaining in the pressure cell.

Figure 1 shows equilibrium ¥(3) data from these experiments.

In addition, a subset was performed at a particular pressure (equivalent
to ¥ = —64 J/kg). In this group, different initial volumes of the clay slurry
were used. For each experiment the (constant) material length, M, was
calculated using Eq. (24).

Figure 2 shows cumulative outflow, i, graphed as a function of ¢'* for
these experiments. The data are in the reduced forms (/M) and (¢'*/M) to
eliminate the effect of V.

In the second series of experiments, longer columns of clay were used,
and this series was terminated while the water content at the distal end
remained unchanged at 8 = 37.5. The spatial distributions of water and
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FIG. 1. The characteristic equilibrium relation between water content, 9, and water potential,
¥, for the clay used in the experiments described herein.

clay were determined by destructive sectioning and oven drying. All
experiments in this series were submitted to a pressure equivalent to ¥/(J/
kg) = —64 but were terminated at different times ¢.

For this set of experiments the Boltzmann variable, A = mt™"?, then
may be used to eliminate m and ¢ from both the flow Eq. (21) and the
conditions for its solution (Egs. 25, 26) and, by implication, 3(}) is the
unique solution of this set of equations. So, if Eq. (21) is valid and Egs.
(25) and (26) are realized experimentally, then the data from this second
series of experiments must be unique if graphed as 3 vs A.

Figure 3 shows that these data so plotted are indeed effectively
unique.

DISCUSSION

In what follows, we need details of the solution of Eq. (21) subject to
Egs. (25) and (26). Full theory is set out elsewhere (28) but, briefly, the
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FI1G. 2. Cumulative outflow, i, graphed as a function of 1'2 for columns of clay of initial

water content 8 = 37.5 and material length M = 1.15 X 10™* m (@), 2.3 X 10~ m (O), and

5.73 X 10™% m (A). Each column was subject to a constant pressure of 64 kN/m?. The effect
of M is eliminated by use of the variables i/M and ¢"/2/M.

introduction of A in the equations followed by integration of the
transformed Eq. (21) using Eq. (25) yields

dd ¥
Enaneli-— A -_— 2
D) 7y J;n 5 dd (28)
and then using Eq. (26)
ad Y S(84,9,)
= - Mg = — 2Wels) 29
D(®) s j; 32 dd 5 (29)

Equation (28) provides the basis for calculating 3(2) if D(9) is known
(28-31), or a method (28) for calculating D(9) from 8()).
Figure 4 shows D(8) so calculated for the data of Fig. 3.
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FIG. 3. Profiles, observed during filtration, of water content, 8, graphed as a function of

material distance, m, divided by 12, for clay with initial water content § = 37.5, and subject

to pressure of 64 kN/m% Also shown is the error function solution of Eq. (21) subject
to relevant conditions and which yields, correct integral behavior for the system.

Equation (29), differentiated with respect to x and integrated with
respect to ¢, yields

0= f Um=odt = S(Be,8, )" (30)
0

This equation follows if we recognize that within the gravity-free analysis
(for which Eq. 21 is appropriate), combination of Eq. (12) and Eq. (19)
yields

u= —D(S)% (31)

Within this framework, we make the following comments:

(1) The hydraulic properties of this material are fully defined by the
data of Figs. 1 and 4. Neither relation is predictable, but both are
macroscopic and readily measurable. They do not depend on any
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FIG. 4. Diffusivity D(®) derived from the data of Fig. 3 using Eq. (28). The dashed line is the
constant value of D which yields correct integral behavior for the system filtering under a
pressure of 64 kN/m2 The continuous line is the mean.

abstractions relating to particle shape, arrangement, or interaction. They
do, of course, represent the appropriate test of models so based.

(2) Figure 2 reveals cumulative outflow linear with regard to 7' for the
“early stages” of the filtration process, as Eq. (30) requires. Furthermore,
the slope of the curve equals the integral in Eq. (29) evaluated with the
data of Fig. 3, as it must. On closer comparison, it emerges that the
reduced time "?/M, for which Fig. 2 data are linear, exceeds by a factor of
~1.66 the value of 1/A in Fig. 3 where 3—38,. Thus, 1/ behavior continued
~2.75 times longer than the time when the water content at the distal end
commenced to decrease. “Square-root-of-time” behavior therefore reveals
no indication of a time when the process of “filtration” becomes one of
“expression” or “consolidation.”

Physically, this somewhat surprising behavior arises because of the
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“shape” of the D(¥) relation in Fig. 4 and the fact that flow is related to the
integral of D(9) but weighted toward the outflow surface where 8 = 3;and
D(D) is relatively great (32).

Specifically, for the semi-infinite case, it can be shown (30) that

2 = 2 YW T
S (80’8n) J;)" F(a,ﬂo,ﬁn) o

4 -
= ; (80 - 8n)ZD(ﬂo’ﬂn) (32)
Thus the appropriate mean value of D) is given by

> 9 -
n sV V0,

(33)
In these equations, F is the flux-concentration relation (29), ie., the
characteristic ratio of flux at § = §, to that at & = 9,; and DS,,9,) is the
appropriate mean value of D(9). The second equality in Eq. (32) is the
exact solution of the linear form of Eq. (21) subject to Eqgs. (25) and (26)
33).

If now we assume (reasonably) (32) that for filtration

< F<@ (34)
where
8=0-9,)0 -9, (35)
it follows that
% 2D(9,,9,) % o
St "2-1p 36
J; " p(eyi < ZE0 < L 07D (B)dd (36)

where the “shape” of D(8) and the effect of 8 in the right-hand integral
conspire to weight D toward a value close to that at §,. By implication
then, flow is relatively insensitive to what is happening at the distal end of
the column.

(3) The solution of the linear form of Eq. (21). For the data of these
experiments, D= 2.12 X 107! m%/s yields integral behavior which corre-
sponds with observation shown in Fig. 2. In this sense, then, the solution
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of the linear form of Eq. (21) subject to Egs. (25) and (26) is exact. The
penalty for linearization, however, is shown in Fig. 3, where the linear
solution (33) is shown as the smooth (error function) curve. Clearly, this
solution gives an incorrect prediction of the spatial distribution of the
solid and the water, although its “integral” behavior corresponds to
reality.

(4) The relationship of D) defined for material space with the
corresponding coefficient in “x-space.” Equation (5) was developed (12,
14) to yield an equation corresponding to Eq. (21) in x-space. In that
space the coefficient corresponding to D(®) is D(8). The two are related
according to

D(®) = D(B)/(1 + B) 37

For the material we deal with, the variation in D(0) is about the same as
that of D) in the corresponding moisture content ranges, so it might
appear to be sensible to work in real space. In fact, however, the
arithmetic is more complicated (/2), and methods for solving Eq. (21) (or
Eq. 18) are so well-developed that the material approach is preferable (cf.
Refs. 12 and 14).

(5) Equation (19), together with the data of Figs. 1 and 4, permits us to
calculate the k(8) relation for this clay. The result of this calculation is
shown as Fig. 5. These data may then be compared with the correspond-
ing functional calculated using the approach of Kozeny-Carman in
which k is taken to be proportional to the cross-sectional area available
for flow, 0,, and to the square of the characteristic length of colloid
particle separation, (6,/6,), i..,

k o 63/0? (38)

From Fig. 5 it is evident that the Kozeny-Carman approximation does
not provide a good basis for prediction of k(9) for this clay.

(6) The importance of gravity. Formally, the “early stages” of filtration
in a vertical cell require, for their description, the solution of Eq. (18). The
data presented here justify the use of the simpler Eq. (21), but it is still
useful to define conditions under which the full solution is required;
particularly since the problem is raised in a formal sense by, for example,
Gibson et al. (8). A useful, order-of-magnitude estimate of the time for
which a gravity-free analysis is appropriate is provided by Philip (28) and
used by Smiles (34).

Briefly, the solution of Eq. (18) subject to Egs. (24) and (25) can be
written as the series
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FIG. 5. Graphs showing k as a function of & determined (a) using Fig. 1 and Fig. 4 and Eq.
(19); and (b) the approach of Kozeny-Carman matched to (a) at § = 19. Evidently the
Kozeny-Carman approach is unreliable for this material.

i) =St ot + B4 - - (39)
in which § is the solution to the gravity-free Eq. (21) and the subsequent
terms represent the effect of gravity. A comparison of the first and second
terms of the series yields the required estimate. Thus, if £, is the time for

which St'2 > 1000z and we set a. = Y(g(y — Dk(@®,)/M(1 + 9,)) (33), then for
the material described here,

t, = 107%(S/a)

=2.239 X 107 s (40)
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which would correspond to a column of initial material length 1.9 X 1072
m, or actual length 0.64 m.

It should be emphasized here that it is not generally true that gravity
effects can be neglected, and certainly data for “red mud” suggest that
filtration (or sedimentation) in that material requires solution for
appropriate conditions of the full Eq. (18) (35, 36). Filtration for longer
periods of time require formai solution of Eq. (18). Solutions of this
equation subject to conditions (24) and (25) are available (30, 37, 38), and
immediate recourse to linearization (e.g., Ref. §) is unnecessary and often
misleading since linearization, as we show above, produces correct
integral behavior but carries the penalty that the profile shapes can be
substantially in error.

(7) The requirement that the water content remains unchanged at the
distal end of the column. It must be admitted that the analytical and
quasi-analytical solutions alluded to here do not apply to columns once
9 <9, and the approach to equilibrium must then be handled
numerically. This problem is not of great moment, however, and
matching of the quasi-analytical approach for early stages of outflow
(where the numerical procedures are relatively inefficient), with the
efficient numerical calculation of the final stages (of expression), appears
to provide a rational comprdmise. This procedure will be described
elsewhere.

(8) Conversion of data from material to “real” space. Various important
aspects of filtration can be derived by integration or differentiation of
9(\) and manipulation of Eq. (4). Here it suffices to demonstrate the
conversion from m-space to z-space for the data of Fig. 3. For this data set
it follows from Eq. (10) that the variables A (= mr™?) and y (= zt™'?) are
related according to x = fo (1 + $dr.

Figure 6 shows A(x) calculated using the data of Fig. 3. It will be noted
that since A, in a reduced sense, is the cumulative volume of solid
measured away from z = 0, Fig. 6 shows the spatial distribution of solid
volume in the filter cake and its evolution in time. The dashed curve in
Fig. 6 shows the error incurred if the problem is linearized, and the error
function “solution” of the problem is used as a basis for calculation with
this set of data.

(9) Other features of filtration, It was not the purpose of this paper to set
out in full the details that emerge from this approach to filtration. It is
important to note, 'however, that other aspects of the process are readily
derived from 8(L). For example, the distribution of water potential is
readily determined from Figs. 3 and 1, while the water pressure p,, may
then be calculated using Eq. (15).

In addition, F, and F,, can be determined by noting, from Eq. (30) and
the continuity requirement, that
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FIG. 6. Graph relating the material coordinate m (in reduced form A = mt™'2) to “real”
space a (in the form y = z~Y/2), This graph also reveals the cumulative distribution of solid
in real space because of the definition of m (Eq. 23).

F,+ F, =-i = St (41)
whence, from Eq. (4),
F,= (St - u)/(1+ ) (42)
and
F,= @S+ uw)/(1 +9) (43)

in which the Darcy flux « is given by
?

w= 1] (\/2)ad (44)
s’l

which is derived from Eqs. (28) and (31).
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CONCLUDING REMARKS

We have described simply and directly the formulation of an equation
describing one-dimensional filtration of a dispersion of solid particles in
liquid, using a membrane impermeable to the solid.

The approach, which is based on Darcy’s law and continuity equations
for the liquid and the solid, depends on the existence of functionals
relating the permeability and the liquid potential to the liquid content of
the suspension. Although neither relation permits precise prediction,
both are readily measured.

If the problem is cast in material coordinates (which satisfy the
continuity equation for the solid component), the flow equation takes the
form of a nonlinear Fokker-Planck equation which reduces to a
nonlinear diffusion equation in circumstances where gravity effects may
be neglected.

Methods of solution of these equations, without recourse to lineariza-
tion, are well known.

Data are presented which yield no evidence to justify treating
consolidation or filtration as physically different processes.
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